

Date Planned ://	Daily Tutorial Sheet - 4	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level - 1	Exact Duration :		

* 76 .	There are p coplanar parallel lines. If any 3 points are taken on each of the lines,	the maximum number
	of triangles with vertices at these points is:	\odot

(A) ${}^{3p}C_3 - p$ (B) ${}^{9p^2(p-1)} \over 2$ (C) ${}^{4p^2(p-1)}$ (D) ${}^{18p}C_2 + 27^pC_3$

77. Two lines intersect at O. Points $A_1, A_2,, A_n$ are taken on one of them and $B_1, B_2,, B_n$ on the other, the number of triangle that can be drawn with the help of these (2n+1) points are:

(A) n **(B)** n^2 **(C)** n^3 **(D)** n^4

78. There are 15 points in a plane, no three of which are in a straight line except 4, all of which are in a straight line. The number of triangles that can be formed by using these 15 points is:

(A) 404 (B) 415 (C) 451 (D) 490

79. Three straight lines l_1 , l_2 and l_3 are parallel and lie in the same plane. 5, 6, 7 points are taken on each of l_1 , l_2 and l_3 respectively. The maximum number of triangles which can be obtained with vertices at these

(A) 751 (B) 756 (C) 425 (D) 725

80. There are three coplanar parallel lines. If any n points are taken on each of the lines, the maximum number of triangles with vertices at these points is:

(A) $3n^2(n-1)+1$ (B) $3n^2(n-1)$ (C) n^3 (D) $n^2(4n-3)$

81. The number of integral solutions of $x_1 + x_2 + x_3 = 0$, with $x_i \ge -5$ is:

(A) $^{15}C_2$ (B) $^{16}C_2$ (C) $^{17}C_2$ (D) $^{18}C_2$

82. The number of ways in which 30 coins of one rupee each be given to six persons so that none them receive less than 4 rupees is:

(A) 231 **(B)** 462 **(C)** 693 **(D)** 924

83. The number of positive integral solutions of x + y + z = n, $n \ge 3$, is:

(A) n-1C₂ (B) n-1P₂ (C) n(n-1) (D) n^2

(A) $^{n-1}C_2$ (B) $^{n-1}P_2$ (C) n(n-1) (D) n^2

84. The number of points (x, y, z) in space, whose, each coordinate is a negative integer such that that x + y + z + 12 = 0, is:

(A) 385 (B) 55 (C) 110 (D) 91

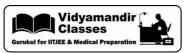
85. The number of ordered triplets, positive integers which are solutions of the equation x + y + z = 100 is:

85. The number of ordered triplets, positive integers which are solutions of the equation $x + y + z = 100^{\circ}$ is: **(A)** 5081 **(B)** 6005 **(C)** 4851 **(D)** 4987

86. If a, b, c are positive integers such that $a+b+c \le 8$, then the number of position values of the ordered triplet (a, b, c) is:

(A) 84 **(B)** 56 **(C)** 83 **(D)** 112

points, is:



87.	If a, b,	c, are natural nu	ımbers i	n <i>AP</i> and $a+b+$	-c = 21, t	then the possible	numbe	r of values of th	e ordered	
	triplet ((a, b, c) is:							\odot	
	(A)	15	(B)	14	(C)	13	(D)	16		
88.	The nu	mber of ways in	which th	ne sum of upper	faces of	four distinct dice	es can be	e six:	\odot	
	(A)	10	(B)	4	(C)	6	(D)	7		
89.	If x , y ,	z is integer and	$x \ge 0$, y	$y \ge 1, \ z \ge 2, \ x + y = 1$	+z = 15	then the number	er of valu	ues of the order	ed triplet	
	(x, y, z) is:									
	(A)	91	(B)	455	(C)	$^{17}C_{15}$	(D)	55		
90.	Total n	umber of positive	e integra	l solutions of 15	$x_1 + x_2$	$_2 + x_3 \le 20$, is eq	qual to:		\odot	
	(A)	1125	(B)	1150	(C)	1245	(D)	685		
91.	If a, b ,	If a, b, c, d are odd natural numbers such that $a+b+c+d=20$ then the number of values of the								
	ordered	l quadruplet $(a,$	b, c, d	is:					\odot	
	(A)	165	(B)	455	(C)	310	(D)	620		
92.	Determ	ine the total nur	nber of r	non-negative inte	egral solu	utions of $x_1 + x_2$	$+ x_3 + x_3$	$_4 = 100$.		
	(A)	$^{103}C_3$	(B)	$^{103}C_{4}$	(C)	$^{104}C_3$	(D)	$^{104}C_{4}$		
*93.	The nu	The number of non-negative integral solutions of $x_1 + x_2 + x_3 + x_4 \le n$ (where n is a positive integer) is:								
	(A)	$^{n+3}C_3$	(B)	$^{n+4}C_{4}$	(C)	$^{n+5}C_{5}$	(D)	$^{n+4}C_n$		
94.	The nu	mber of non-neg	ative int	egral solutions o	of $x_1 + x_2$	$2 + x_3 + 4x_4 = 20$	is:		\odot	
	(A)	236	(B)	336	(C)	436	(D)	536		
95.	The nu	The number of positive integral solutions of the equation $x_1x_2x_3 = 60$ is:								
	(A)	54	(B)	27	(C)	81	(D)	None of these		
96.	The nu	mber of ways in	n which	20 different pea	arls of tw	vo colours can b	oe set al	lternately on a	necklace,	
	there b	eing 10 pearls of	f each co	lour, is:					(\mathbf{F})	
	(A)	9!×10!	(B)	$5(9!)^2$	(C)	$(9!)^2$	(D)	$(10!)^2$		
97.	Six boys and six girls sit along a line alternatively in x ways; and along a circle (again alternatively) in y									
	ways, t	hen:							\odot	
	(A)	x = y	(B)	y = 12x	(C)	x = 10y	(D)	x = 12y		
98.	In how many ways four men and three women may sit around a round table if all the women are together?									
	(A)	144	(B)	146	(C)	156	(D)	136	lacksquare	
99.	In how many ways can a party of 4 men and 4 women be seated at a circular table so that no two women									
	are adj	acent?							\odot	
	(A)	144	(B)	36	(C)	576	(D)	None of these		
100.		mber of ways in r is given by:	which 6	6 men and 5 wor	men can	dine at a round	table if	no two women	are to sit	
	(A)	30	(B)	5! × 4!	(C)	7! × 5!	(D)	6! × 5!	\odot	